top of page

Crypto Peeps

Public·7 members

Hector Sorokin
Hector Sorokin

Radio Silence 3.2


Morse code can be memorized and sent in a form perceptible to the human senses, e.g. via sound waves or visible light, such that it can be directly interpreted by persons trained in the skill.[7][8] Morse code is usually transmitted by on-off keying of an information-carrying medium such as electric current, radio waves, visible light, or sound waves.[9][10] The current or wave is present during the time period of the dit or dah and absent during the time between dits and dahs.[11][12]




Radio Silence 3.2



In the original Morse telegraph system, the receiver's armature made a clicking noise as it moved in and out of position to mark the paper tape. The telegraph operators soon learned that they could translate the clicks directly into dots and dashes, and write these down by hand, thus making the paper tape unnecessary. When Morse code was adapted to radio communication, the dots and dashes were sent as short and long tone pulses. It was later found that people become more proficient at receiving Morse code when it is taught as a language that is heard, instead of one read from a page.[19]


With the advent of tones produced by radiotelegraph receivers, the operators began to vocalize a dot as dit, and a dash as dah, to reflect the sounds of Morse code they heard. To conform to normal sending speed, dits which are not the last element of a code became voiced as di. For example, the letter L is voiced as di dah di dit.[20][21] Morse code was sometimes facetiously known as "iddy-umpty", a dit lampooned as "iddy" and a dah as "umpty", leading to the word "umpteen".[22]


In the 1890s, Morse code began to be used extensively for early radio communication before it was possible to transmit voice. In the late 19th and early 20th centuries, most high-speed international communication used Morse code on telegraph lines, undersea cables, and radio circuits.


Although previous transmitters were bulky and the spark gap system of transmission was dangerous and difficult to use, there had been some early attempts: In 1910, the U.S. Navy experimented with sending Morse from an airplane.[24] However the first regular aviation radiotelegraphy was on airships, which had space to accommodate the large, heavy radio equipment then in use. The same year, 1910, a radio on the airship America was instrumental in coordinating the rescue of its crew.[25]


During World War I, Zeppelin airships equipped with radio were used for bombing and naval scouting,[26] and ground-based radio direction finders were used for airship navigation.[26] Allied airships and military aircraft also made some use of radiotelegraphy.


However, there was little aeronautical radio in general use during World War I, and in the 1920s, there was no radio system used by such important flights as that of Charles Lindbergh from New York to Paris in 1927. Once he and the Spirit of St. Louis were off the ground, Lindbergh was truly incommunicado and alone. Morse code in aviation began regular use in the mid-1920s. By 1928, when the first airplane flight was made by the Southern Cross from California to Australia, one of its four crewmen was a radio operator who communicated with ground stations via radio telegraph.


In addition, rapidly moving field armies could not have fought effectively without radiotelegraphy; they moved more quickly than their communications services could put up new telegraph and telephone lines. This was seen especially in the blitzkrieg offensives of the Nazi German Wehrmacht in Poland, Belgium, France (in 1940), the Soviet Union, and in North Africa; by the British Army in North Africa, Italy, and the Netherlands; and by the U.S. Army in France and Belgium (in 1944), and in southern Germany in 1945.


Radiotelegraphy using Morse code was vital during World War II, especially in carrying messages between the warships and the naval bases of the belligerents. Long-range ship-to-ship communication was by radio telegraphy, using encrypted messages because the voice radio systems on ships then were quite limited in both their range and their security. Radiotelegraphy was also extensively used by warplanes, especially by long-range patrol planes that were sent out by those navies to scout for enemy warships, cargo ships, and troop ships.


Morse code was used as an international standard for maritime distress until 1999 when it was replaced by the Global Maritime Distress and Safety System. When the French Navy ceased using Morse code on January 31, 1997, the final message transmitted was "Calling all. This is our last cry before our eternal silence."[27]


The United States Coast Guard has ceased all use of Morse code on the radio, and no longer monitors any radio frequencies for Morse code transmissions, including the international medium frequency (MF) distress frequency of 500 kHz.[30] However, the Federal Communications Commission still grants commercial radiotelegraph operator licenses to applicants who pass its code and written tests.[31] Licensees have reactivated the old California coastal Morse station KPH and regularly transmit from the site under either this call sign or as KSM. Similarly, a few U.S. museum ship stations are operated by Morse enthusiasts.[32]


Today among amateur operators there are several organizations that recognize high-speed code ability, one group consisting of those who can copy Morse at 60 WPM.[35] Also, Certificates of Code Proficiency are issued by several amateur radio societies, including the American Radio Relay League. Their basic award starts at 10 WPM with endorsements as high as 40 WPM, and are available to anyone who can copy the transmitted text. Members of the Boy Scouts of America may put a Morse interpreter's strip on their uniforms if they meet the standards for translating code at 5 WPM.


Currently, only one class of license, the Radiotelegraph Operator License, is issued. This is granted either when the tests are passed or as the Second and First are renewed and become this lifetime license. For new applicants, it requires passing a written examination on electronic theory and radiotelegraphy practices, as well as 16 WPM code-group and 20 WPM text tests. However, the code exams are currently waived for holders of Amateur Extra Class licenses who obtained their operating privileges under the old 20 WPM test requirement.


International Morse code today is most popular among amateur radio operators, in the mode commonly referred to as "continuous wave" or "CW". (This name was chosen to distinguish it from the damped wave emissions from spark transmitters, not because the transmission is continuous.) Other keying methods are available in radio telegraphy, such as frequency-shift keying.


The original amateur radio operators used Morse code exclusively since voice-capable radio transmitters did not become commonly available until around 1920. Until 2003, the International Telecommunication Union mandated Morse code proficiency as part of the amateur radio licensing procedure worldwide. However, the World Radiocommunication Conference of 2003 made the Morse code requirement for amateur radio licensing optional.[39] Many countries subsequently removed the Morse requirement from their licence requirements.[40]


Until 1991, a demonstration of the ability to send and receive Morse code at a minimum of five words per minute (WPM) was required to receive an amateur radio license for use in the United States from the Federal Communications Commission. Demonstration of this ability was still required for the privilege to use the HF bands. Until 2000, proficiency at the 20 WPM level was required to receive the highest level of amateur license (Amateur Extra Class); effective April 15, 2000, the FCC reduced the Extra Class requirement to 5 WPM.[41] Finally, effective on February 23, 2007, the FCC eliminated the Morse code proficiency requirements from all amateur radio licenses.


Although the traditional telegraph key (straight key) is still used by some amateurs, the use of mechanical semi-automatic keyers (known as "bugs") and of fully automatic electronic keyers is prevalent today. Software is also frequently employed to produce and decode Morse code radio signals. The ARRL has a readability standard for robot encoders called ARRL Farnsworth spacing[42] that is supposed to have higher readability for both robot and human decoders. Some programs like WinMorse[43] have implemented the standard.


Radio navigation aids such as VORs and NDBs for aeronautical use broadcast identifying information in the form of Morse Code, though many VOR stations now also provide voice identification.[44] Warships, including those of the U.S. Navy, have long used signal lamps to exchange messages in Morse code. Modern use continues, in part, as a way to communicate while maintaining radio silence.


In one case reported in the radio amateur magazine QST,[54] an old shipboard radio operator who had a stroke and lost the ability to speak or write could communicate with his physician (a radio amateur) by blinking his eyes in Morse. Two examples of communication in intensive care units were also published in QST magazine.[55][56] Another example occurred in 1966 when prisoner of war Jeremiah Denton, brought on television by his North Vietnamese captors, Morse-blinked the word TORTURE. In these two cases, interpreters were available to understand those series of eye-blinks.


Morse code can be transmitted in a number of ways: Originally as electrical pulses along a telegraph wire, but later extended to an audio tone, a radio signal with short and long tones, or high and low tones, or as a mechanical, audible, or visual signal (e.g. a flashing light) using devices like an Aldis lamp or a heliograph, a common flashlight, or even a car horn. Some mine rescues have used pulling on a rope - a short pull for a dot and a long pull for a dah.


For use on radio, there is little point in learning to read written Morse as above; rather, the sounds of all of the letters and symbols need to be learned, for both sending and receiving. 041b061a72


About

Welcome to Crypto Peeps! Here you can connect with other mem...
bottom of page